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I. Introduction 

BRS-transformations[‘] are known to yield the relevant symmetries of the quan- 

tum action of gauge theor@]. As such, the BRS symmetries have turned out to 

play a major role in the understanding of the occurrence of anomalies and of their 

geometrical interpretation[3-10]. Furthermore, they form the natural setting for the 

description of canonical systems with first class constrain@-‘sl. In a recent paper[“l, 

the BRS transformations were generalized to include terms with non-trivial Lie alge- 

bra p-cocycles, p 2 3 using free minimal differential algebras[‘sl, the natural setting 

allowing the extension of the notion of Lie algebras. Theories with a free differential 

algebra (FDA) as the underlying symmetry have been proposed in the context of 

supergravity theories, e.g., in refs. [l&17]. The FDA setting allows one to introduce 

in a natural way antisymmetric tensor gauge field theories. Such theories and their 

quantization have been extensively studied in the literature, c.f., e.g., refs. [18-X]. 

In ref. [14], a bigraded differential algebra is considered with the two differentials d 

and s, d will be identified for example with the differential operator on space-time and 

s will be identified with the differential operator of the BRS transformations.The BRS 

algebra interpolates between the FDA with differential s which defines the symmetry 

and the Weil algebra[z2-23~ with differential d, generated by the pform gauge fields 

and their curvatures, the d cohomology therein being trivial. The connection between 

the FDA and the Weil algebra is provided by a generalization of the so-called “Russian 

Formula”[s-s1,c.f. also refs. [24-251. 

From a physical point of view, the BRS symmetry arises as a secondary symme- 

try, an effective invariance of the quantum action due to a gauge fixing procedure 

(the Faddeev-Popov prescription[*‘]). As such, the gauge transformations are the 
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fundamental symmetries on the classical level. 

1n the present article, we study a generalization of BRS and gauge transformations 

associated with the construction given in ref.[l4]. The occurrence of higher-rder an- 

tisymmetric tensor gauge fields allows one to consider non-trivial Lie algebra cocycles 

in the definition of their infinitesimal gauge transformations. As a consequence, these 

transformations become non-linear in the gauge fields and their algebraic structure is 

much more involved. In particular, the commutator of two infinitesimal gauge trans- 

formations does not close in the usual way, leading to the presence of non-trivial, 

field-dependent, two-cocycles in the gauge algebra. We would like to stress that the 

generalization of gauge transformations as we propose here are enforced upon us by 

the necessity to have an algebraic structure in which every object plays a non-trivial 

role. 

Besides the possible applications of these extended BRS and gauge structures to 

supergravity theories and to a better understanding of the group manifold approach to 

these theories[“‘l, one of our other motivations for developing these concepts is related 

to the extension of the notion of integrability to dimensions higher than two[‘*]. In 

particular, the zero curvature condition will no longer have simple solutions of the 

type A = dU.U-’ because of the occurrence of the higher Lie algebra pcocycles, 

leading to nonlinear terms. As an other application, we believe that these generalized 

gauge structures could also be relevant in the context of string field theories. 

This article is organized as follows. In Section II, we give the basic definitions and 

notations on minimal free differential algebras (FDA) and recall briefly some results 

of ref.[l4] on the construction of the associated BRS algebra and introduce some new 

useful concepts for their analysis. In Section III, generalized gauge transformations 
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are given, together with the study of their algebra. In Section IV, we rewrite these 

structures in a compact operator formulation. An example, using a Lie algebra 3- 

cocycle is given in Section V. Finally, we show, in Section VI, how to construct 

BRS-invariant quantities containing only the gauge fields and their curvatures by 

quotienting the BRS algebra with an appropriate ideal. 

II. The BRS Algebra of a Minimal FDA 

In order to make the article self-contained, we give in what follows some basic 

definitions and notations and recall some of the results of ref.[l4]. Let ‘H be a graded 

commutative free differential algebra (FDA) w c is connected in degree zero, i.e., hi h 

‘HZ @ ‘Hs = ‘H,,@X+ with 7is = K being the ground field (R or C) and ‘H+ the 
PZ 

part generated in positive degrees. We denote the differential of 71 by s. 

It is known from ref.[l5] that any FDA can be decomposed uniquely into a tensor 

product of a minimal algebra M and a contractible one C s and that there is a unique 

procedure to construct the most general minimal FDA M. See also refs.[l6] for the 

case of superalgebras. 

A minimal FDA is obtained by extending the Maurer-Cartan forms in the dual 

g* of a Lie (super)-algebra G, identifying r\g* with MI, the subalgebra generated 

in degree one and by adding new generators in degrees higher than one. Choosing 

a basis {xy, Q = 1,. . . , Nr} of G*, (Nt = dim G) and representations I)(r) of G, 

i.e., D(r)(Ecl)j = dhpI!‘, {EC)} b eing the basis of Q such that [EC), EF)] = C&E?) 

where C$ are the structure constants of 4. We introduce at each level (p), p 2 2 a 

$We recall that a contractible differential algebra C has the property that SC, C C,+,, whereas a 

minimal algebra M obeya sM C M+ M+.[-1 
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set of new generators {xi, i = 1,. . , N,} in degree p, (A’r = dim D(r)), and write the 

action of the differential s on x6 by imposing the minimality condition: 

ax; zz - dhs)’ x; x; + a;+, [Xl,. . ., X,-l1 (2.1) 

in which Rk,, is a Chevalley (p + 1)-cocycle of s with value in D(r). This cocycle 

condition is required in order to ensure the nilpotency of the differential operator s, 

i.e., s’ = 0. By a theorem of Chevalley and Eilenberglrsl, it is known that there is 

no non-trivial cocycle for semi-simple Lie algebras apart in the scalar representation. 

To overcome this restriction, one has then to work with non semi-simple Lie algebras. 

As in ref.[l4], we will consider the subspace n of the dual of M+, the part generated 

in positive degrees of a minimal FDA M defined by: 

q = (u E (M,)’ / w (al . al) = 0 Val,al E M+} . 

Then, n has a canonical Lie algebra structure. We may choose a basis {E!p),i = 

I,..., Nr},p 2 1 of n with even or odd parity according to the degree, i.e., SE(P) = 

(-l)P+‘E(P)s. Let {xi} denote the generators of M+ as before, we can then introduce 

the elements of M+@q: 

x=~c x; Ep) (2.2) 
p,i 

where we have a formal sum over forms of all degrees, at each level taking values in 

the corresponding representation D(r). These kind of superforms have been used by 

Quillen in another contextlssl. Note that x anticommutes with s. In order now to 

rewrite the relations (2.1) in a compact form, we introduce the multilinear maps: 

c(p) : A”] -q, p=2,3,... 
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In terms of the superforms (2.2), the relations (2.1) read simply: 

3x + c l c(p) (x p! ,...,x) = 0 
PS 

which is a generalization of the Maurer-Cartan equations with C(r) extended to 

M+@TJ. The nilpotency of s implies the following cocycle conditions on the C(P): 

x2 (p & cm (x,. . . rX,C(q) (x, . . . ,x,) = 0 . (2.4) 

The Weil algebra W(M) associated with M is obtained by introducing for each 

generator xi of M+ a connection Af,l and a curvature F&l defined by the action of 

another differential d such that the d-cohomology is trivial. These connection and 

curvature having respectively the degree (p) and (p+ 1) with respect to the differential 

d. Thus, we associate to each superform (2.2) the elements of W(M) @ 7: 

A = c A{,1 Ep) 
i,p?l 

3 = c F&,) E,@‘) 
i,p?l 

(2.5) 

The Weil algebra W(M) being the graded commutative differential algebra generated 

by {&.)I and {F&)). The action of its differential d on the generalized connection A 

and curvature 3 is given in compact notations by: 

dd = 3-C$‘) 

d3 = -C!‘)(3) (2.6) 

where we have introduced the d-dependent multilinear maps C$” acting on variables 
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Ui as: 

C!p’(ul,...,up) = c qLp (q~P)! c(g) (d,...,d,vi,...,Vp) . (2.7) 

qL2 

We note that as a consequence of the cocycle conditions (2.6), the Ctl obey the 

following relations (c.f. Appendix A): 

where the sum is over all the permutations rr E S,/Sr x Ss-, (S,, being the symmetric 

group of n elements). Introducing the operator (extension of the usual covariant 

derivative) 

dA. = d . +C!“( .) P-9) 

we obtain that eq. (2.6) provides a generalization of the Bianchi identity, i.e., 

dn3 = 0. 

The main result of ref.[l4] is the construction of the BRS algebra U(M) associ- 

ated with a minimal FDA M, i.e., a bigraded differential algebra U(M) = $r,s CJr,r 

such that $rzl Vo,, is isomorphic to M+ and $r>i V,,e is isomorphic to the Weil 

algebra W(M). This construction amounts to an extension of the so-called “Russian 

Formula” [s-s]. The prescription is that one identifies the generators Af,) and F&l 

of W(M) in (2.5) with the generators Af,)‘“’ and F/pjp+“o of U(M) (the superscript 

indices are respectively the d and s degrees of each generator) and one performs the 

translation d --+ d + s together with: 

AiP) - Ai,) 
pea + Af,)- + . . . + A[,)~‘P 

Fib) - 
pi P+LO 

04 
+ F;p)p'l + . . . + F[p)z'p-' (2.10) 
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with p > 1, where Aip, k-1 and qi$’ are the generators of U(M) together with dAipJk” 

and dF/pjk” or related generators, such that aAfpJk” E Uk,l+l , dAf,lk” E Uk+l,l, etc. 

Then one identifies the elements of the same bidegree. The “Russian Formula” means 

that eqs. (2.6) are invariant under the translations d -+ d + s and (2.10). In ref.[l4], 

the resulting BRS algebra U(M) is explicitly constructed and it is shown that its d 

and (d + s)-cohomologies are trivial, see also ref.[7]. For our purpose, we recall here 

the relevant formulae. By using the superforms elements of U(M) @ 7: 

A, = c Af,+,)“= Ei(p+p) 
QQ 

3r = c F/p+,)q+“P E,!p+‘) (2.11) 
921 

with p + q 2 1, p 2 0 and do = A and 70 = 3, we obtain the following compact 

formulae for the action of the differential s on the generators of the BRS algebra: 

4+&,4+l+ c c r,({;})c~(Ai,..-Ai,,...,Ai;..Ai,)=3~+1 
;:yl ~$-;~l 

(2.12) 

r,(t+) = *- * where nil is the number of dr with T = ik in each Cz. In the 

same way we obtain: 

s3p+d,&+,t c wHc~ (4 . . .A, 1.. * ,A. . . . Ai.,E,) = 0 . 
ia >::iY >_ 1 ia+C i,=p+l 

(2.13) 

These formulae are, in fact, obtained by projecting out each constant ghost degree in 

the following translated equations of eqs. (2.6): 

(dts)A.=i-$1 

(dts)%CB')(3)=o (2.14) 
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where A = &s dr and 3 = &c 3r. 

Using the cocycle conditions (2.9) for 0, it is easy to show that s and d extend 

to two anticommuting differentials of U(M), . i.e., such that sa = d2 = ad + ds = 0. 

It has to be noted that in general, due to the occurrence of higher-order Lie algebra 

cocycles, Tp # 0 for p 2 1, contrary to the usual case where the curvature is not 

translated. This means that in our more general situation, it is necessary, in order to 

keep the algebra U(M) free of algebraic relations among the generators, to have also 

ghost fields associat edto 3. In particular, the r.h.s. of eq.(2.12) is non-zero even for 

p = 0 which~gives the action of .s on the generalized connection .4,,. 

III. The Generalized Gauge Transformations 

When dealing with a BRS algebra in the usual case, i.e., the case of a Lie algebra 

instead of a minimal FDA, the infinitesimal gauge transformations can be recovered 

from the BRS transformations by “replacing” the ghost fields by the infinitesimal 

gauge parameters. It is a priori not at all clear that a similar prescription works in 

the present case of a minimal FDA. In fact, the appearance of ghost fields of degree 

higher than 2 suggests the existence of objects which at the same time play the role of 

gauge parameters as well as of fields, i.e., objects that are transformed under the gauge 

transformations, leading to a residual invariance of the classical action after a gauge 

ftxing procedure and hence to the phenomenon of ghosts of ghost.@“-s’l. Nevertheless, 

it is possible to proceed almost as usual, the classical sector of the theory being the 

Weil algebra W(M). Thus, we introduce generalized gauge parameters e and n, i.e., 

E = c E[~~E,!P) , r/ = xqbjEj=) (3.1) 
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replacing the ghost fields di and 31 respectively, where cfpl and nip1 are respectively 

(p - 1) and (p)-forms with respect to the differential d and carrying no ghost degree. 

We then define following eqs. (2.12, 2.13), the infinitesimal gauge transformations on 

A and 3 by a derivation 6 (e, 7) d e en in on c and n acting as follows: p d g 

6(E,v)d = 7th 

6(~,9)3 = dAv+C$)(3,c) . (3.2) 

Furthemore, we impose that S(e,u) d oes not act on the field independent gauge pa- 

rameters. Successive applications of gauge transformations (3.2) lead to the following 

closure relations: 

l~(~,~~),~(~‘,~‘)l~ = 6(u,mA)d 

[6(%‘l),~(~‘,?‘)l~ = s(‘A,‘lA)3 (3.3) 

in which 

EA = c!" (C, C') 

Q, = c2”’ (7, e’) - c!” (T)‘, E) t c!“’ (3, E, E’) . (3.4) 

As the closure relations (3.3) involve field-dependent parameters EA and n.& i.e. new 

parameters that depend on A and 3, the gauge algebra is not closed in the usual 

sense. In fact, the transformation on the r.h.s. of (3.3) defines a new type of gauge 

transformation depending now on two sets of parameters (5,~) and (e’,n’). Indeed, 

due to the presence of non-trivial Lie algebra cocycles C(*l,p 2 3, it is impossible to 

define a set of two parameters (g,jj), as in (3.1), functions of only (6,~) and (e’,n’) 

(and not of the fields A, 3) such that the r.h.s. of (3.3) be given in terms of gauge 
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transformations 6(8, fj), even different from those given by (3.2), but depending as 

parameters only on (?, 6). Following this remark, we can give another interpretation 

of the closure relation (3.3). Let us at first rewrite the r.h.s. of (3.3) in two parts, 

one being a transformation depending on parameters (z,v), defined as in (3.1), which 

are functions of (s,n) and (c’, 7’) only: 

(3.5) 

and a similar formula for the curvature 3, where 6(2,?j) is given by (3.2) with param- 

eters: 

F = cY)(e,e’) 

?j = dZ)(7), 2) - C@)(q’, E) (3.6) 

and n(c,n; E’,n’) is a gauge transformation acting on the fields A and 3 depending 

intrinsically on two sets of parameters whose explicit expression is given from eqs. 

(3.2 - 3.4). Then, using the fact that the commutator in (3.3) and hence in (3.5) obey 

the Jacobi identity as can be explicitly shown, the transformation fl(c,n; c’,n’)d in 

(3.5) is to be interpreted as a non-trivial field dependent two cocycle (living in a 

non-trivial representation) of the algebra of gauge transformations b(e,n) given by 

eqs. (3.2 - 3.6). 

It has to be stressed that this new effect occurs only in the presence of non- 

trivial Lie algebra cocycles C(r) ,p 2 3. Let us, in fact, consider for one moment the 

particular case where all the cocycles C(r) ,p 2 3, are set equal to zero, but where 

we still have the generalized gauge field A and curvature 3, each containing their 

complete tower of higher-order antisymmetric tensor fields. The parameters c and n 

are still given by (3.1). Then, the gauge transformations (3.2) linearize in terms of 
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A and T and the algebra of gauge transformations closes since in that case R z 0 in 

(3.5). Moreover, the constraint 7 = 0 defines a sub-algebra of gauge transformations 

since ?j = 0 if 7 = 7’ = 0 in (3.6), which is not true in the general situation due to the 

last term in eq. (3.4). Let us note that this particular case where C(P) E 0 for p 2 3, is 

already a generalization of the usual gauge theories where A contains only a oneform 

gauge field. Furthermore, in this case the infinitesimal gauge transformations form a 

Lie algebra and can be exponentiated to give finite gauge transformations forming a 

group. 

Returning now t.o the general case, i.e., where there is at least one non-zero 

cocycle Cfpl ,p 2 3, we wish to make a general remark on the algebraic structure of 

the gauge algebra: due to the extended closure relations (3.3) or (3.5), the original 

gauge transformations (3.2) do no more form a basis of the gauge algebra and are only 

generating the complete algebra through successive commutators. The algebra will 

contain, in general, gauge transformations of order n depending on a set of parameters 

u%m);... ; (c,,, v,,)} the first non-trivial example being given by the transformation 

of order two a(~,?; c’,$) in (3.5). 

The next problem we wish to deal with concerns the construction of d and s 

invariant field dependent quantities. Another non-trivial effect of the presence of the 

non-trivial Lie algebra cocycles C(p),p 1 3 is in order at this point. Indeed, the 

transformation law of the curvature 3 is not given by a standard commutator of c 

and 3, but rather contains a dA7 term (coming from the ghost associated to the 

higher curvatures) and a field dependent bilinear product between E and 3. In the 

next section, we reformulate this problem in an operator language that will enable 

us to analyze in a more convenient way the construction of invariants under the BRS 

transformations. 
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IV. The Operator Formalism 

In order to analyze the construction of d and 8 invariants, we rewrite the structures 

given in the last sections in term of operators acting on arbitrary elements v of 

U(M) @ 7. Actually, the idea is to use a generalization of the usual adjoint mapping, 

but here acting on U(M)@7 and defined through the bilinear map $1 given in 

eq.(2.7). Hence, to any homogeneous element C of U(M)@, different from A, we 

associate an d-dependent linear operator t acting on any element v of U(M) @v as 

follows: 

i (VI = C!“Cf, v) . (4.1) 

More generally, to any set of all different homogeneous elements &, . . , <, of U(M) @ n 

all different from A, we define the linear operator: 

it A . . . A &I - (v) = c!p+‘) (<I, . . . , f,, v) . (4.2) 

Furthermore, we define the gauge field and curvature operators A and y in the 

following sway: 

A(v) = C!“(V) 

3(v) = cp(3,v) 

(4.3a) 

(4.36) 

where eq.(4.3b) is obtained by taking [ to be equal to 3 in eq.(4.1). Then eqs.(2.6) 

can be rewritten in the following form (c.f. AppendixB): 

(4.3) 

and for the operator Bianchi identity: 

(4.4) 
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where we have used the operator covariant derivative dd defined by: 

dd.( = d[ $ /it - ( -l)lc’[.a (4.5) 

where the dot products in (4.4) are the usual operator products defined by successive 

application of operators and ICI stands for the total degree of the associated homoge- 

neous element C in U(M) @n. We wish to stress at this point that, in this operator 

language, the relations between the gauge field operator A and the curvature opera- 

tor 3 in (4.5, 4.6) become usual, even if the definitions of these objects contain all 

the tower of higher-order antisymmetric tensor fields and of the Lie algebra cocycles 

@‘),p 2 3. The BRS transformations (2.12J.13) take now the form: 

s.d = (+‘~-[3Adl]*)-dd.A1 

85 = -da. (?I - [3A A,] -) + ?.A, - Al.3 (4.5) 

where A, and $I are the operators associated with A, and 3I defined by eq.(2.11). 

Here again, besides the “translation” term + = (FI - [3~ A,]^) in (4.7) we recover 

for the BRS transformations of A and ? almost the usual formula given by the ghost 

operator a,. We have to remark, however, that the field A enters through eq(4.1) in 

the definition of .&, leading back, as it should be, to the generalized closure relations 

(3.3 - 3.5), but here in a more convenient formulation. 

From eqs.(4.5, 4.6), it is clear that there is a possibility to construct d-invariants 

by considering an operator-trace of polynomials of y. Here, the operators we have 

constructed have to be considered as endomorphisms acting on a vector space. The 

trace is then defined as usual (we give an example in the following) and denoted by 

tr(. . .). We have 

d tr (F.9.. . . .i) = 0 (4.7) 
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and one can construct the corresponding Chern-Simons term[sq by using the usual 

homotopy formulae since the d-cohomology of the algebra generated by the operators 

A and $ is trivial. As a simple example, we have 

d tr A.$.- ;&i/i 
> 

= tr s-’ . (4.8) 

Hence, by identifying in (4.9) the terms of the same form degree (with respect to d) 

we obttin generalized Chern-Simons terms. Note that we also have: 

s t@.Y;. .7:, = -7I d tT(+. u ) . 
n-times (n-1)4imes 

(4.9) 

Let us now give a further generalization of the above picture, namely, by defining 

a new differential operator V such that V = d + 3. The complete BRS algebra was 

obtained from the eqs.(2.14), i.e.: 

V.&&C~ 

vF+cy(Y) =o 

(4.10) 

(4.11) 

where A and F contain sJl the fields and their associated ghosts. Thus, we can define 

new operators t as in eq. (4.1), but now using A and Ct’ instead of A and Ct’. All 

the preceding relations remain true, but now with A,? and 2, replacing A, 3 and d. 

In particular, we have: 

(4.12) 

and since the V cohomology is trivial[‘4] we obtain: 

VJ(“) 
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where the J(“) can be obtained by standard homotopy formulae[3-s] written in terms 

of the operators A and 2 which verify: 

vi = $-j.j (4.14) 

and: 

Now we can expand I(“) and J(“) with respect to the ghost degrees, namely: 

p’ = 5 p (4.16) 
j=O 

J(“) = 5 JI”’ (4.17) 
j=O 

where j stands for the ghost degree and M and N are two finite integers such that 

M 2 N,and D 2 M where D is the dimension of the differentiable manifold wjtb 

differential operator d (with the example of space time), D being supposed arbitrary 

but finite here. Then, eqs.(4.13,4.14) g’ Ive the following ‘descent’ relations: 

d$) = 0 

dip’ + dj”’ = 0 

d$” + sIi1’, = 0 (4.18) 

together with: 
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(4.19) 

dJj”) + sJ~:‘, = (4 Ik 

sJd”’ = 0 

with noting that I!“’ = 0 for k 2 N. All these quantities are polynomials in the gauge 

fields, their curvatures and their associated ghosts, It’ and Je’ being polynomials 

of only the physical fields A and y-. We note also that there always exist among 

the I!“) an object $1 of maximal (finite) ghost degree which is an s-invariant and I 

similarly there exist among the Jp) an object of maximal (finite) ghost degree J$ 

s-invariant. Furthermore, we can obtain other a-invariant quantities from equations 

(4.18,4.19) by projecting out each constant form degree (with respect to d) for a given 

ghost degree. These s-invariants can be trivial. 

V. An Example With a 3-Cocycle 

Before going to the construction of a-invariants containing, for example, only the 

gauge fields and their curvatures along the above line, we wish to give here a simple 

example of the structures we have described in Section IV. 

Let us consider the following FDA generated in degree one by {xy, a = 1,. . . , N} 

and (xi,; = I,... , n} and in degree two by {xi, a = 1,. . . N} and (xi, i = I,. . . , n}, 

The action of s being defined by: 

1 
3x; = -5 c a”, xi x; 

sxf = -Dbj x; x’; 
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3x; = 4; xi x; + ; P;k xf xi x: 
ax; = -D’. .a, x; x: ( ‘-xi 2) 

The nilpotency of the differential s is equivalent to the following constraints on the 

coefficients C&, Dbj and PGk: 

Cc CL + cycl (cde) = 0 

Dbj D;, - Dbj Db, - C;, Da = 0 

czc p;k - 3Pzj D;, + cycl(ijk) = 0 

D6j Gm + perm (jkh) sign (perm) = 0 . (5.2) 

The first relation is the Jacobi identity for the coefficients Czs thus defining a Lie 

algebra f&,, the second one is the condition that the matrices (Da): G Dbj form a 

representation of Go. Hence, the two first relations define also a non semi-simple Lie 

algebra &I, having GO as a sub-algebra. 

The two last relations in (5.2) imply that PG, is a 3-cocycle of B in the adjoint 

representation of Go. The existence of this cocycle is not excluded since it does 

not violate the Chevalley-Eilenberg theorem 12’l. In order to illustrate the operator 

formalism of section IV, we introduce the following matrices & and is: 

(id: = CL xi (21); = 0:~; (21): = -D: x’; 

(iz): = -Ctc x”, (22); = -Dij x; 

(lid: = Dij xi (iz); = -;PGk x’; x; . (5.3) 

Then using (5.1) and (5.2) we can compute the action of the differential s on these 
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quantities as follows (the dot (.) is now the usual matrix product): 

821 = --kl& 

a,& = -rt1.22 + bil . (5.4) 

Let us note that these transformations look as usual ones in this operator formulation, 

even if kz contains the 3-cocycle in its definition. It is now easy to see, for example, 

that the quantity: 

t~(zica.~*) = c; c:* x$x; 
+ D&. D$ xi x; 

- P;h Ddl x’; x: x: 

(5.5) 

is a non trivial s-invariant. Note that the two first terms are just given by the usual 

trace of two objects defined in the adjoint representation of Go, while the last one is 

constructed with the 3-cocycle PPjk. Using eq. (5.4), it is easy to construct other 

s-invariants. 

The associated Weil algebra is generated, according to Section II, by the connec- 

tions A; and Ai in degree one, by Ai and A’; in degree two and by their respective 

curvatures F; and Fj in degree two, F.J and F;’ in degree three, with respect to the 

differential d, its action being given by: 

d A; = F; - ;Cfc A; A; 

d Af = F,i- Dij A; A; 

d A; = F; - C,o, A; A; +; P& A’, Aj A; 

d A’, = F,i - 0: (AT Af; - A; A{) 

(5.6) 
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together with the Bianchi identities: 

dF; = C;F;A; 

d F,i = Dbj (F; Ai - A; F:‘) 

d F; = C;= (F,” A; - A; F;) - ; P& F;’ A; A: 

d F,i = 0: (F; Aj - A; F, - F; A; - A; F;) . 

(5.7) 

As before, we can construct the matrices At, .& and $r, ps, representing the operators 

A and $. The matrices A1 and .& are given by formulae (5.3) when replacing x1 

and x3 respectively by Al and Aa and we define the matrices pa and ks by: 

(&),” = C; F,b, (i’z); = -Dij F:’ 

(&); = Dbj F; 

(~s;J)~ = -C,O, F3 (~~)~ = obj F;’ 

(&); = -Dbj F; (&)f = -P& F:’ A:. 

The action of d can then be given in a compact form: 

d--i, = &-siA,..& 

d-k = &-A,. A,+&. A, 

and for the operator Bianchi identities: 

d I$ + ai,.& - &.ti, = o 

d & + a,.& + &..& + /i,.& - &.A2 = IJ , 

(54 

(5.9) 

(5.10) 
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Eqs.(5.9, 5.10) stand for the explicit realization of the general relations (4.5), (4.6) in 

the case of a non-trivial 3-cocycle. It is now easy to write the Chern-Simons term 

associated to tr(7Z) in degree five with respect to d as follows: 

J = ; tT (22 P2 t iii, & - A, A, A,) (5.11) 

and we have by explicit computation, d.7 = I, with 

I = tr (&&) . (5.12) 

Hence, I is just the degree five of the Pontryagin density in (4.9). Note that, as 

it should be, I is a d-invariant element of the Weil algebra and that it contains an 

unusual kilIing form (defining the trace) P&Di,A* + (I +-+ j) which, coming from 

Cyl, is field dependent and is constructed with the 3-cocycle P$,. 

VI. The BRS Invariants 

We now can show how to obtain s invariant quantities from the preceding con- 

structions. We have first to note that due to the translation term 71 in (3.2) the 

space of gauge and BRS transformations is, in general, too large to allow for the 

construction of s-invariant objects containing the physical fields only. For example, 

the Chern-Simons like terms constructed in the operator formulation, i.e., (4.9): 

J = ts- ( A.? - ; A.A.A > 

such that dJ = tT(?..f) is not invariant under the BRS transformations (2.12, 2.13) 

due to the translation term + in (4.7). 
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The main idea is, in fact, to quotient the original BRS algebra by an appropri- 

ate ideal in order to define another bigraded algebra Q in which there exist objects 

constructed with only generators of the Weil algebra W(M) (i.e. the gauge fields 

and their curvatures) invariant under the BRS transformations. This is also equiv- 

alent to working in the BRS algebra U(M) w ic in this case is no more free since h h 

one imposes algebraic relations among the generators leading to the construction of 

an ideal. Such ideal can be constructed, for example, by considering any element 

K of the a-cohomology of the BRS algebra, i.e. SK = 0, of homogeneous degree 

constructed from the ghosts and the fields which generate the minimal subalgebra of 

the BRS algebra with respect to the differential s (c.f. ref.[l4] for more details). We 

consider now the subalgebra T of the BRS algebra generated by elements of the form 

(K.p + dK.q) in which p and q are elements of the BRS algebra. Then it is easy to 

show that this subspace T is an ideal of the BRS algebra. Furthermore, we can show 

that T is stabIe by the action of d and .s. Hence, the quotiented algebra Q = U(M)/7 

is well defined and the two differentials d and s can be defined uniquely on it. The 

algebra Q inherits a bigraduation from the BRS algebra and is also a bigraded dif- 

ferential algebra since ‘T is a bigraded ideal. This prescription also works for any 

“homogeneous Chevalley cocycle of the BRS algebra”, i.e. a set {K’,i = 1,. . . ,n} 

of elements K’ taking values in a representation of dimension n of the original Lie 

(super)-algebra and such that VjKj = 0 where Vi is the covariant s operator in this 

representation. 

It is now easy, at least formally, to see how these procedures work in the general 

case by using the operator formalism developed in Section IV. As can be seen from 

eq. (4.20), Jr’ which contains only the physical field is not an s-invariant module d 

due to the presence of a nontrivial 1;“’ term which, in general, is not an s-invariant. 
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However, as we have noted already from eq. (4.19), there always exists an object 

@l # 0 which is an s-invariant of the BRS algebra. Therefore, we can obtain a 

quotiented BRS algebra by imposing in a consistent way the s-invariant constraints 

It’ = 0 and d@l = 0. In this new BRS algebra, we obtain that I$!, is an s- 

invariant. Hence, we can construct a nested series of BRS algebras, the last one being 

defined (consistently) by I!“) = 3 0 for j 2 1. In this new BRS algebra we have then 

d.$‘) = I?), SIP’ = 0 and dJ,(“) + sJe’ = 0. Hence, $1 is an s-invariant module d, 

which can be used for constructing non-trivial s-invariant quantities. Of course, such 

a set of consistent but implicit constraints have to be carefully analyzed in each case, 

since they are giving algebraic relations among the generators of the BRS algebra. 

Their role is, in fact, to put restrictions on the ghost fields of the BRS algebra and, 

in particular, to avoid arbitrary values of the ghosts 3p in (2.12,2.13) since otherwise 

they could be used o completely gauge away the dr, and hence de, with the exception 

of its one d form part. Note also that in the new BRS algebra, since IF’ = 0 for j > 1, 

eq. (4.20) define a series of descent equations which generalize the usual one[3-01. We 

now show two examples which use this procedure. 

Example 1: 

We consider the dual of a Lie algebra CJ, generated by (xp} in degree one and we 

add a generator of degree two ,f3 in the scalar representation of CI, the action of the 

differential s being given by: 

SXQ = -- 2 cry XB x7 

sp = -5 trg. (6.2) 

It is easy to see that trx3 is a 3-cocycle of G in the scalar representation. The 
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associated Weil algebra is generated by connections and curvatures AP and F” in 

degrees one and two, and B and H in degrees two and three, with respect to the 

differential d. Its action is given by: 

dA” = F” - 1 C” ,@ AT 
2 p-f 

dF” = C& FB A7 

dB = H-+A3 

dH = tr FA’. 

(6.3) 

The associated BRS algebra can be defined by making the following translations: 

d-+d+s,A--+A+~,F+F,B+B+b+pandH+H+h. Itisabigraded 

algebra such that the action of the differentials d and s on some of its generators is 

given by (in addition to (6.2) and (6.3)): 

sA” + dxP = C;;, A” x7 

SF” = C,9, Fa x’ 

sB+db = h-trxA’ 

sb+ dp = -tTx=A 

sH$dh = 2tr FxA 

sh = tr Fx’. 

(6.4) 

From eqs.(6.4), it can be easily seen that (h - trFx) is an s-invariant. So we 

can obtain another algebra by quotienting this one with the ideal generated by the 

elements (h - tr Fx) and d(h - tr Fx). This new algebra is stable by d and s. 
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Its particularity is that one recovers the usual Chern-Simons term tr(AF - iA3) in 

the equation for dB. This can be shown easily by imposing in eqs.(6.3, 6.4) that 

h = t+ Fx and by defining H’ = H - tr AF. The d and B actions write as folIows: 

dB = H’$ tT AF - 5 A3) 

sB+db = trx(F- A’) 

sbfdp = -trx’A (6.5) 

dH’ = -tr F’ 

sH’ = 0. 

Notice that we have obtained an invariant curvature H’ which can be used to con- 

struct an invariant action. This quotiented algebra is the usual one used in theories 

containing a two-form antisymmetric tensor field B coupled via a Chern-Simons term 

to one-form gauge potentials, see e.g.lz6*311. 

Example 2: 

The same prescription can also be used in the generic example of Section V where 

we have constructed the Weil algebra and given d-invariants. The associated BRS 

algebra can be constructed by making the usual translations d + d $ s, A: + A: + 

xy,A; -+ A;+r;+x;,F; -+ F,“,F,” + F?+8: with a=a,i and a = 

l,...,N, i = I,. . , n. Here the subscripts of x, P and 6’ stand for the ghost degree 

(degree with respect to s), the total s plus d degree being kept constant in each 
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translation. 

The minimal subalgebra of this BRS algebra with respect to the differential s is 

generated by the elements xy, xz, F,” and 8;‘. The action of the differential s can be 

given in the language by introducing the following matrix jr: 

(lq = qc 0; (&); = -Dbj 9; 

(&); = -P& Fj x; (&); = Dbj Ol; 

and using the already defined operators kr, kr and pz of Section V: 

& = -&.g1 

sgz = -);11.& + it2.~1 

332 = $2 * & - g* ’ & 

se1 = I$,.& -g,.& - i,.& - &.e^, . 

(6.6) 

(8.7) 

Then it is easy to show that the quantity 

I(‘) = tr (&.&) Pw 

is a non trivial s-invariant constructed with only the generators of this minimal BRS 

subalgebra and corresponds to the Chern-Simons terms I and J in eqs.(5.11, 5.12). 

Hence, we can now obtain the quotient of the original BRS algebra by the ideal 

generated by elements of the form I(‘). p + dI(l).q, p and q being any element of the 

BRS algebra. In particular, this quotiented algebra contains an object s-invariant 

modulo d built only with generators of the Weil algebra. It is the Chern-Simons term 
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J given in Section V. One has: 

SJ = -dJ(‘) $ I(‘) (6.9) 

where: 

(6.10) 

and ?r is given by: 

(tl); T C,D, r;, (tl) = -0: I’; 

(&)1, = Dbj l?j,, @)f = -P;& A); x; (6.11) 

with 

s& = -dd, - A,. 8, - dl. Ai, - I$. k1 - iI. & - f, . A% + I$. f1 (6.12) 

J(t) is a three-form with ghost degree one. AR these formulae are obtained from the 

relation dJ = I and dZ = 0 of Section V by making the translations d -t d + s, J + 

J+J(‘)+.-., Z + I + It’). Then taking into account I(‘) E 0 which defines the ideal. 

We have, in the quotiented algebra: 

sJ = -dJ(‘). (6.13) 

J is a four-form containing only the gauge fields and their curvatures which can then 

be used in constructing an s-invariant action. 

VII. Conclusions 

In this article, we have shown how to obtain generalized non-linear BRS and gauge 

transformations from higher order Lie algebra cocycles and acting on p-form gauge 
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fields (p > I), using the concept of free minimal differential algebras. These algebraic 

structures are of interest in the context of supergravity theories, and for theories 

based on the group manifold approach. Along this line, we have generated algebras 

of gauge transformations containing a non-trivial field dependent two-cocycle. We 

have developed an operator formalism through a generalized adjoint mapping, i.e., 

associating to n objects of a non semi simple Lie algebra, an operator acting in its 

adjoint representation defined through an (n + 1) cocycle. This formalism allowed 

us to obtain a convenient treatment of the non-linearities of our gauge and BRS 

transformations and to find a way for constructing associated s-invariant objects. 

This was achieved by defining a quotiented BRS algebra by an appropriate ideal. 

Resulting Chern-Simons like terms can be obtained in any space time dimensions , 

ss in the example of Section VI and which can be used to construct s-invariant actions. 

The quantization of such theories, that exhibit the ghost for ghost mechanism, will 

also require the incorporation of the corresponding anti-ghost fields, the algebraic 

structure of which has not been discussed here. Finally, let us note that we have 

obtained a generalization of the so-called ‘descent equations’ that will be useful in 

the discussion of possible consistent anomalies for these theories at the quantum level. 
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Appendix A 

We start from eq. (2.4) rewritten for do 

( “4. . . ’ d,&l(d,...,d)) . (A.11 

Then we make a translation A -+ A + Cz=r @Vi = A where A is an homogenous 

quantity of odd degree, element of U(M) @ 7, the Vi are element s of even degree 

of U(M)@q, the odd degrees being contained in the 6” which are anticommuting 

variables. It is then easy to write the translated of relation (A.l) and to extract the 

term containing all the ~;,i = l,... q, only once each, which has to be zero. Taking 

into account the fact that the variables 6’ anticommute among themselves and with 

A, and that we have the relation C(P)@ = (-1) P+rOiC(Pl, we obtain after some algebra 

eq. (2.8), the C$” being defined by eq. (2.7). We give now some examples that we 

use in the article: 

q = 0 cy (c!“‘) = 0 

q= 1 ck” (C!‘l(Vr)) -c!” (Cf),“t) =o 

q = 2 c!” (c,) ( Y,h)) - cf) (%cy’(v3)) 

(A.21 

(A.3) 

- cy(cy(vl),v2) t cy (d&,V~) = 0 . (A-4) 

We wish to remark that the relation (A.4) is valid also for an odd variable yz with 

y being an even element of U(M) @ 7. We give also the relation for variables Wi all 

odd: 

w,, , . . . , we, fw’) (WT.+, I.. . , K,)) = 0 . (A.5) 
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Appendix B 

Using the fact that X(p) = (-l)PC(P)d we obtain from eq.(2.7) with the differen- 

tial d not acting on the elements Vi: 

=(-,)p+‘C!p+‘)(dd,~,...,v~) . 

In particular, for p = 1, we obtain, using also eq. (A.3): 

@k’))(v) = Cf)(dd,v) = C!” (3-C!&) 

= Q(3,“) - cy (f$‘(“)) . 

Hence, 

(B.1) 

(B.2) 

(B.3) 

We obtain in the same way eq. (4.6). 
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